\(\left(x-1\right).f\left(x\right)=\left(x+5\right).f\left(x+3\right)\) (*)
Thay x = 1 vào (*) ,có :
\(\left(1-1\right).f\left(1\right)=\left(1+5\right).f\left(1+3\right)\) \(\Rightarrow0.f\left(x\right)=6.f\left(4\right)\) \(\Rightarrow0=6.f\left(x\right)\) \(\Rightarrow f\left(x\right)=0\) => x = 1 là nghiệm của đa thức (*) Thay x= -5 vào đa thức (*) ,có : \(\left(-5-1\right).f\left(x\right)=\left(-5+5\right).f\left(-5+3\right)\) \(\Rightarrow-6.f\left(x\right)=0.f\left(-2\right)\) \(\Rightarrow6.f\left(x\right)=0\) \(\Rightarrow f\left(x\right)=0\) Vậy x= -5 là nghiệm của (*) Vậy (*) có ít nhất 2 nghiệm