Lời giải:
Áp dụng BĐT AM-GM cho các số thực dương ta có:
$2x^2+\frac{z^2}{2}\geq 2xz$
$2y^2+\frac{z^2}{2}\geq 2yz$
$x^2+y^2\geq 2xy$
Cộng theo vế và thu gọn suy ra:
$3x^2+3y^2+z^2\geq 2(xy+yz+xz)=10$
(đpcm)
Dấu "=" xảy ra khi \(2x=2y=z=2\)
Lời giải:
Áp dụng BĐT AM-GM cho các số thực dương ta có:
$2x^2+\frac{z^2}{2}\geq 2xz$
$2y^2+\frac{z^2}{2}\geq 2yz$
$x^2+y^2\geq 2xy$
Cộng theo vế và thu gọn suy ra:
$3x^2+3y^2+z^2\geq 2(xy+yz+xz)=10$
(đpcm)
Dấu "=" xảy ra khi \(2x=2y=z=2\)
cho x,y,z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\) tìm max của \(Q=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho ba số thực dương x, y, z thỏa mãn x+y+z+2=xyz . Chứng minh rằng:
x+y+z+6\(\ge\)2(\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\))
cho 3 số dương x,y,z thỏa mãn x2+y2+z2 \(\le\) 3. Tìm min của P = \(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Cho x+y+z=\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) trong đó x,y,z là các số dương. Chứng minh rằng:x=y=z
Cho các số x,y,z thỏa mãn x+y+z=3
Tìm giá trị lớn nhất của biểu thứa P=xy+yz+xz
Giải các phương trình sau:
a)\(\left\{{}\begin{matrix}x+y-xy=8\\y+x+yz=15\\z+x+xz=35\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3+\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{matrix}\right.\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
cho x,y,z là số nguyên dương và x+y+z=1 tìm max của
\(P=\dfrac{xy}{z+1}+\dfrac{yz}{x+1}+\dfrac{xz}{y+1}\)
a, Cho 0 <= x,y,z <= 1. Chứng minh
0 <= x+y+z-xy-yz-xz <=1
b, Cho -1 <= x,y,z <=2 và x+y+z=0 . Chứng minh
x^2 + y^2 + z^2 <= 6
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right)\). Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)