Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến :
\(\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}-\dfrac{\left(b-x\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}-\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(a-b\right)}\)
Cho \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Tính \(P=\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}.\left(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\right)\)
Cho a+b+c+d=0; ab+bc+ca=1
Rút gọn\(Q=\dfrac{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho a,b,c là 3 số dương thỏa mãn điều kiện:
\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}=2\)
Tìm giá trị lớn nhất của tích \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
1) Cho \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-5}+\dfrac{1}{2-x}\)
a) Rút gọn A
b) Tìm x để A>0
c) Tìm \(x\in z\) để \(\left\{{}\begin{matrix}A>0\\A\in Z\end{matrix}\right.\)
2) Cho \(B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\)
a) Rút gọn B
b) Tìm x để \(B=\dfrac{1}{x^2}\)
HELP ME!!!!!
Thực hiện các phép tính sau :
a) \(\left[\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{4x^2-y^2}+\dfrac{1}{\left(2x+y\right)^2}\right]\)\(\cdot\dfrac{4x^2+4xy+y^2}{16x}\)
b) \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)
HELP MÌNH 2 câu này vớiiii !!!
Cho a + b + c = 2. Tính giá trị P=\(\frac{2-\left(ab+bc+ca\right)}{\left(a-\frac{4}{3}\right)^2+\left(b-\frac{4}{3}\right)^2+\left(c-\frac{4}{3}\right)^2}\)
Cho c2 + 2(ab - ac - bc) = 0; b khác c, a + b khác c.
CM \(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
Cho 2 biểu thức
\(M=\left[\dfrac{x^2-y^2}{x^2+2xy+y^2}+\dfrac{2}{xy}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]\cdot\dfrac{1}{x-y}\)
\(N=\dfrac{1}{x+y}+\dfrac{2xy}{\left(x^2-y^2\right)\cdot\left(x+y\right)}+\dfrac{3}{x^2-2x+2}\)
a/ Rút gọn M, N
b/ Với giá trị nào của x, y thì M - N có GTNN ? Tìm GTNN đó.