\(a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)
\(\Rightarrow a+b+c+3\le3c+6\)
\(\Rightarrow a+b+c\le3c+3\)
\(\Rightarrow1\le3c+3\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow c\le-\dfrac{2}{3}\)
Dấu = xảy ra khi c=\(\dfrac{-2}{3}\)
Vậy c nhỏ nhất khi \(c=-\dfrac{2}{3}\)