Ta có:
\(b^2=ac\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)
Ta lại có:
\(\dfrac{\left(a+2019b\right)^2}{\left(b+2019c\right)^2}=\dfrac{\left(bk+2019b\right)^2}{\left(ck+2019c\right)^2}=\dfrac{\left(ck^2+2019ck\right)^2}{\left(ck+2019c\right)^2}=\left[\dfrac{k\left(ck+2019c\right)}{ck+2019c}\right]^2=k^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}\)
Vậy ta có ĐPCM.