\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right)..................\left(1^2-2016^6\right)}{2^2.3^2.4^2...........2016^2}\)
\(\Leftrightarrow A=\frac{\left(1-2\right)\left(1+2\right)\left(1-3\right)\left(1+3\right)........\left(1-2016\right)\left(1+2016\right)}{2^2.3^2..........2016^2}\)
\(\Leftrightarrow A=\frac{\left(-1\right)\left(3\right)\left(-2\right)\left(4\right).............\left(-2015\right)\left(1017\right)}{\left(2.3.4......2016\right)\left(2.3.4.2016\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)......\left(-2015\right)\right]\left(3.4.....2017\right)}{\left(2.3.4....2016\right)\left(2.3.4...2017\right)}\)
\(\Leftrightarrow A=-\frac{1}{2016.2}=-\frac{1}{4032}>-\frac{2}{2016}\)
\(\Leftrightarrow A=-\frac{2}{2016}\)
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right)..........\left(1^2-2016^2\right)}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)\left(3\right)\left(-2\right)\left(4\right)....\left(-2015\right)\left(2017\right)}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right).....\left(-2015\right)\right]\left(3.4.5...2017\right)}{\left(2.3.....2016\right)\left(2.3.4....2016\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2017}{2016}=-\frac{2017}{2016}< \frac{1}{2}\)
=> A<1/2
Mính xin lỗi
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right)......\left(1^2-2016^2\right)}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(A=\frac{\left(-1\right)3\left(-2\right)4..........\left(-2015\right)2017}{\left(2.3....2016\right)\left(2.3...2016\right)}\)
\(A=\frac{\left[\left(-1\right)\left(-2\right)....\left(-2015\right)\right]\left(3.4.5...2017\right)}{\left(2.3.4.....2016\right)\left(2.3.4...2017\right)}\)
\(A=\frac{\left(-1\right)2017}{2016.2}=-\frac{2017}{4032}< -\frac{2016}{4032}=-\frac{1}{2}\)
=> A< - 1/2