Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{2013.2014}\)
B=\(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+......+\frac{1}{2014.1008}\)
Chứng tỏ rằng:\(\frac{A}{B}\) là số nguyên
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
Chứng minh rằng
\(\dfrac{1}{2}< \dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{199.200}< 1\)
TÍnh A=\(\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
B=\(\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+...+\dfrac{5}{98.99.100.101}\)
C=\(\dfrac{6}{1^2+2^2}+\dfrac{10}{2^2+3^2}+\dfrac{14}{3^2+4^2}+...+\dfrac{398}{99^2.100^2}\)
\(a.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
1) Rút gọn
A =\(\dfrac{\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+.......+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{19}+\dfrac{1}{20}}\)
2) Tìm x
a/ \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Chứng tỏ rằng \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{99.100}=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)
3 Thực hiện phép tính:
a)\(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\) b)\(\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)