Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Anh Nguyễn

Cho abcd=1
Tính M= \(\frac{a}{abc+ab+a+1}\) + \(\frac{b}{bcd+bc+b+1}\) + \(\frac{c}{cda+cd+c+1}\) + \(\frac{d}{dab+da+bd+1}\)
Làm đúng mình tích nhé

Akai Haruma
19 tháng 11 2019 lúc 0:29

Lời giải:

Sử dụng điều kiện $abcd=1$ có:

\(M=\frac{a}{abc+ab+a+1}+\frac{ab}{abcd+abc+ab+a}+\frac{abc}{ab.cda+ab.cd+abc+ab}+\frac{abcd}{abc.dab+abc.da+abc.d+abc}\)

\(=\frac{a}{abc+ab+a+1}+\frac{ab}{1+abc+ab+a}+\frac{abc}{a+1+abc+ab}+\frac{1}{ab+a+1+abc}\)

\(=\frac{a+ab+abc+1}{abc+ab+a+1}=1\)

Vậy $M=1$

Khách vãng lai đã xóa