Ta có:
\(VT\ge\frac{1}{a^2b^2}+\frac{1}{b^2c^2}+\frac{1}{c^2a^2}=\frac{a}{a^3.b^2}+\frac{b}{b^3.c^2}+\frac{c}{c^3.a^2}\)
\(VT\ge\frac{a}{\frac{\left(a^3\right)^2+\left(b^2\right)^2}{2}}+\frac{b}{\frac{\left(b^3\right)^2+\left(c^2\right)^2}{2}}+\frac{c}{\frac{\left(c^3\right)^2+\left(a^2\right)^2}{2}}=VP\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đúng 0
Bình luận (0)