\(\frac{ab}{a+3b+2c}=\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Tương tự: \(\frac{bc}{b+3c+2a}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{b}{2}\right)\) ; \(\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{a+b}+\frac{c}{2}\right)\)
Cộng vế với vế:
\(A\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}+\frac{ab}{b+c}+\frac{ca}{b+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{a+b+c}{2}\right)\)
\(A\le\frac{1}{9}.\frac{3}{2}\left(a+b+c\right)=1\)
Dấu "=" xảy ra khi \(a=b=c=2\)