Cho a,b,c > 0 . Cmr: \(a^2+b^2+c^2+\frac{9abc}{a+b+c}-2\left(ab+bc+ca\right)\ge0\)
cho a,b,c>0 và \(a+b+c\le3\)
Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\ge672\)
Cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+b^2+c^2=1\end{matrix}\right.\). CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)
mọi người giúp em vs ạ a,b,c>0 a+b+c =1 cmr \(\frac{bc}{a+bc}+\frac{ca}{b+ca}+\frac{ab}{c+ab}\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). CMR: \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
1.Cho x, y, z > 0 thỏa \(x^2+y^2+z^2=x^2y^2z^2\). Tìm GTNN của \(P=\frac{x^2}{y^4}+\frac{y^2}{z^4}+\frac{z^2}{x^4}\)
2. Cho a,b,c> 0 và a + b + c = 0
Chứng minh: \(\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}+\frac{ab}{a+b+2c}\le1\)
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
câu 1 :Cmr a)\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
b) \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)
câu 2 : cho a+b=1 .Cm \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)
câu 3: cho a+b+c=1và a,b,c>0.CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
câu 4 Tim max của : ab+2(a+b) ...biết a2+b2=1
giúp mik
cho 0< a,b,c < 2 . Cmr: \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+b^2+c^2}{2}+\frac{3}{2}\)