Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)
Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{a^3}{b}+ab\) ≥ \(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)
\(\dfrac{b^3}{c}+bc\) ≥ \(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)
\(\dfrac{c^3}{a}+ac\) ≥ \(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(a^2+b^2+c^2\right)\) ( * )
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab\left(4\right)\)
\(b^2+c^2\) ≥ \(2bc\left(5\right)\)
\(c^2+a^2\) ≥ \(2ac\left(6\right)\)
Cộng từng vế của ( 4 ; 5 ; 6) , ta có :
\(2\left(a^2+b^2+c^2\right)\) ≥ \(2\left(ab+bc+ac\right)\) ( ** )
Từ ( * ; ** ) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(ab+bc+ac\right)\)
⇔ \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\) ≥ \(ab+bc+ac\)