Áp dụng bđt Cauchy-Schwarz ta có
\(VT\ge\frac{\left[3-\left(a+b+c\right)\right]^2}{\sum\sqrt{2\left(b+c\right)^2+bc}}=\frac{4}{\sum\sqrt{2\left(b+c\right)^2+bc}}\)\(\ge\frac{4}{\sum\sqrt{2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}}}=\frac{4}{\sum\sqrt{\frac{9\left(b+c\right)^2}{4}}}\)\(=\frac{8}{6\left(a+b+c\right)}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)