Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quốc Tuấn hi

cho a,b,c là độ dài 3 cạnh của tam giác : cm: 1/(a+b-c) + 1/(b+c-a) + 1/(c+a-b) >= 1/a + 1/b +1/c Các bạn chỉ mình Dấu bằng xảy ra nghĩa là gì ạ tại sao tìm được dấu bằng ạ

Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 9:55

Dấu bằng xảy ra khi đẳng thức VT = VP biện luận để tìm ra bài này chắc là tam giác đều

Akai Haruma
10 tháng 5 2021 lúc 11:50

Lời giải:

Ta sử dụng BĐT phụ sau (BĐT Bunhiacopxky):

$(x^2+y^2)(z^2+t^2)\geq (xz+yt)^2$. 

Chứng minh BĐT này đơn giản. Bạn biến đổi tương đương thì BĐT còn lại $(xt-yz)^2\geq 0$ (luôn đúng)

---------------------------------

Áp dụng BĐT trên vào bài toán:

Với $x=\sqrt{\frac{1}{a+b-c}}; y=\sqrt{\frac{1}{b+c-a}}; z=\sqrt{a+b-c}; t=\sqrt{b+c-a}$, ta có:

$\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)[(a+b-c)+(b+c-a)]\geq (1+1)^2$

$\Rightarrow \frac{1}{a+b-c}+\frac{1}{b+c-a}\geq \frac{4}{2b}=\frac{2}{b}(1)$.

Tương tự:

$\frac{1}{a+b-c}+\frac{1}{c+a-b}\geq \frac{2}{a}(2)$

$\frac{1}{b+c-a}+\frac{1}{c+a-b}\geq \frac{2}{c}(3)$

Lấy $(1)+(2)+(3)$ theo vế và thu gọn ta có đpcm.

 

Akai Haruma
10 tháng 5 2021 lúc 11:57

Trong bài BĐT, người ta thường yêu cầu CM $A\geq B, A\leq B$.

Đi tìm "Dấu = xảy ra" nghĩa là đi xác định giá trị của $a,b,c$ để $A=B$ thôi, chứ không phải $A>B$ hay $A<B$

Ví dụ trong bài này, dấu "=" xảy ra khi $a=b=c$.

-----------------------------------------------

Ví dụ đơn giản hơn là cho $a,b$ dương thỏa mãn $a+b=2$. CMR $a^2+b^2\geq 2$.

Đi tìm dấu "=" xảy ra là ta đi tìm giá trị của $a,b$ mà $a^2+b^2=2$.

Đương nhiên, $a,b$ vẫn phải thỏa mãn điều kiện đề (>0; tổng bằng 2) 

Từ những điều kiện trên ta suy ra $a=b=1$ chính là điểm mà dấu "=" xảy ra.


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Bách Bách
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Huỳnh Nhật Nam
Xem chi tiết
Big City Boy
Xem chi tiết
Khánh Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết