Sửa đề: \(P=ab^2+bc^2+ca^2+abc\le\dfrac{4}{27}\)
Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(b-a\right)\left(a-c\right)\ge0\)
\(\Leftrightarrow ab+ac\ge a^2+bc\)
\(\Leftrightarrow ca^2+bc^2\le abc+ac^2\)
Do đó:
\(ab^2+abc+ca^2+bc^2\le ab^2+abc+abc+ac^2=a\left(b+c\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=\dfrac{4}{27}\)