Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
Cho \(A=(-4;5];B=\left(2m-1;m+3\right)\), tìm m sao cho:
a, \(A\subset B\)
b, \(B\subset A\)
c, \(A\cap B=\varnothing\)
d, \(A\cup B\) là một khoảng
Chứng minh rằng: Nếu \(A\subset C\) và \(B\subset C\) thì (\(A\cup B\))\(\subset C\)
1. Cho hai tập khác rỗng : A = ( m - 1 ; 4 ] , B = ( -2 ; 2m + 2 ) với m \(\in\) R . Xác định m trong mỗi trường hợp sau :
a . A \(\cap\) B \(\ne\varnothing\)
b. A \(\subset\) B
c. B \(\subset\) A
d. ( A \(\cap\) B ) \(\subset\) ( -1 ; 3 )
Cho hai tập khác rỗng \(A=(m-1;4],B=\left(-2;2m+2\right)\) , với \(m\in R\). Xác định , để
a) \(A\cap B\ne\phi\)
b) \(A\subset B\)
c) \(B\subset A\)
d) \(\left(A\cap B\right)\subset\left(-1;3\right)\)
Cho các tập hợp \(A=\left(-\infty;m\right)\) và \(B=\left[3m-1;3m+3\right]\).Tìm m để
a,\(A\cap B=\varnothing\) b,\(B\subset A\)
c,\(A\subset C_RB\) d,\(C_RA\cap B\ne\varnothing\)
Cho \(A=\left\{x\in N|11-3x>0\right\}\)
\(B=\left\{x\in Z|\left|x\right|\le3\right\}\)
a, Tìm \(A\cup B,A\cap B,C_BA,\) A \ B, B \ A.
b, Tìm X là tập các số nguyên thỏa mãn \(A\subset X\subset B\)
tìm tập X\(\left(a;b\right)\subset X\subset\left(a;b;c;d\right)\)
1 . Cho hai tập A = [ m ; m + 2 ) , B = ( 1 ; 5 ] . xác định m để :
a. A \(\cap\) B \(\ne\) \(\varnothing\)
b. A \(\subset\) B
c. ( A \(\cap\) B ) \(\subset\) ( 0 ; 3 ]
Cho tập hợp \(A=\left\{a;b;c\right\}\) và \(B=\left\{a;b;c;d;e\right\}\). Có bao nhiêu tập hợp X thỏa mãn \(A\subset X\subset B\)