4E. Word skills

Admin (a@olm.vn)

Cho \(a,b,c\)  là ba số dương tùy ý.

1) Chứng minh rằng      \(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}\ge\left(a^3+b^3+c^3\right)\).

 2) Chứng minh rằng nếu \(a,b,c\) thỏa mãn thêm điều kiện   \(abc\le\dfrac{1}{3}\)  thì

    \(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}\ge\left(a^3+b^3+c^3\right)^2\).

Nguyễn Minh Đăng
22 tháng 3 2021 lúc 22:10

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Đăng
22 tháng 3 2021 lúc 22:13

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết