Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c}\)
\(=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)
\(=\dfrac{ac+bc+c^2+ab}{a+b}+\dfrac{a^2+ab+ac+bc}{b+c}+\dfrac{ab+b^2+bc+ac}{a+c}\)
\(=\dfrac{\left(b+c\right)\left(c+a\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)
\(\ge2\left(a+b+c\right)=2\left(a+b+c=1\right)\)
Khi \(a=b=c=\dfrac{1}{3}\)