Cho ∆ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của cạnh BD.
a. Chứng minh : ∆ABM = ∆ADM
b. Chứng minh : AM ⊥ BD
c. Tia AM cắt cạnh BC tại K. Chứng minh : ∆ABK = ∆ADK
d. Trên tia đối của tia BA lấy điểm F sao cho BF = DC. Chứng minh ba điểm F, K, D thẳng hàng
cho tam giác abc vuông tại a có ab=3cm ac=4cm a)tính độ dài cạnh bc b) tia phân giác góc b cắt ac tai e vẽ eh vuông góc với bc tai h.chứng minh rằng tam giác abe =tam giác hbe và ab=hb c)tia ba cắt tia he tại d .chứng minh rằng be vuông góc với cd d)kẻ đường thẳng d vuông góc với bc tại b,d cắt tia ca tại m.tia phân giác của góc m cắt bc tại k.chứng minh rằng mk song sonhg với dc
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?
Cho A ABC vuông tại A có AB = 12cm, BC = 20 cm, trung tuyên AM (MEBC). a) Tính độ dài cạnh AC. b) Từ M kẻ MHI AC (HEAC). Trên tia HM lấy điểm K sao cho MK = MH. Chứng minh AMKB = A MHC. c) BH và AM cắt nhau tại G. Vẽ phân giác MD của AMB (D e AB). Chứng minh rằng ba điểm C, G, D thẳng hàng.
Cho ABC ∆ cân tại A, kẻ AH vuông góc với BC tại H. a/ Chứng minh: AHB AHC ∆ =∆và AH là tia phân giác của BAC b/ Từ H kẻ HM AB ⊥ , HN AC ⊥ ( ∈∈ M AB, N AC), AH cắt MN tại K. Chứng minh: AH MN ⊥ c/ Trên tia đối của tia HM lấy HP sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng
Cho Tam giác ABC vuông tại A, BM là tia phân giác. Vẽ MH vuông góc BC, MH cắt AB tại e
a) chứng minh tam giác ABM = tam giác HBM
b)so sánh AM và CM
c)chứng minh BM vuông góc EC
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .