Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
Cho hình bình hành ABCD. Trên các cạnh AB và BC của hình bình hành ABCD, lần lượt lấy các điểm E và F sao cho AE = CF. AF cắt CE tại P. Chứng minh rằng DP là tia phân giác của ADC
Δ ABC có AB=6cm, AC=7cm. Gọi E là điểm trên cạnh AB và AE = \(\dfrac{1}{3}\) AB. Kẻ EF//BC (F ∈ AC).
a, Tính AE
b, Lập các tỉ lệ trên AB và AC
c, Tính AF
Cho ∆𝐴𝐵𝐶 và điểm D thuộc BC sao cho \(\dfrac{BD}{DC}\) = \(\dfrac{1}{2}\). Từ D kẻ các đường thẳng // với AB, AC lần lượt tại F và E.
a, So sánh \(\dfrac{AF}{AB}\) và \(\dfrac{AE}{AC}\)
b, C/m EF // trung tuyến BI của \(\Delta\)ABC
Δ ABC có AB=6cm, AC=7cm. Gọi E là điểm trên cạnh AB và AE = 1313 AB. Kẻ EF//BC (F ∈ AC).
a, Tính AE
b, Lập các tỉ lệ trên AB và AC
c, Tính AF
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
1, cho G là trọng tâm tam giác ABC. Qua G vẽ đường thẳng song song với Ab cắt BC tại . CMR: BD=\(\frac{1}{3}BC\)
2, Cho hình bình hành ABCD, đường thẳng d cắt cạnh AB, AD và đường chéo AC lần lượt tại E,F,O.CMR\(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
3, Cho tam giác ABC có AM là đường trung tuyến. N là điểm trên đoạn thẳng A. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. CMR: \(\frac{AD}{BD}=\frac{AE}{CE}\)
4, Cho tam giác ABC, D là một điểm trên cạnh AB. Biết AD=8cm, DB=4cm. Tính khoảng cách từ điểm B và D đến cạnh AC, cho biết tổng các khoảng cách đó bằng 15cm
MN GIÚP MK VỚI AK
Cho tam giác ABC. Gọi I là trung điểm của AB;E là trung điểm cuả BI,D thuộc AC sao cho CD/CA=1/3. Gọi F là giao điểm của BD và CE. Tính tỉ số EF/FC.(nhân)BF/FD
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC