Cho: a,b,c > 0 và a + b + c = 3.
Chứng minh rằng:
a) \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
b) \(\frac{a}{ab+b^3}+\frac{b}{bc+c^3}+\frac{c}{ca+a^3}\ge\frac{3}{2}\)
Cho a , b , c > 0 thỏa mãn \(a^2b+b^2c+c^2a=3\)
Chứng minh \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge\frac{a+b+c}{3}\)
Cho a,b,c > 0. Chứng minh rằng: \(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\frac{a^3+b^3+c^3}{3}\)
Cho ba số dương a, b, c thỏa mãn\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh rằng:
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\) ≥ \(\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
a)chứng minh rằng: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\) với mọi giá trị của a,b
b) cho các số dương a,b,c >0 cmr \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^6}{b^3\left(c+a\right)}+\frac{b^6}{c^3\left(a+b\right)}+\frac{c^6}{a^3\left(b+c\right)}\ge\frac{ab+bc+ca}{2}\)
Cho a,b,c>0 và \(a^2b+b^2c+c^2a=3\)
Chứng minh rằng : \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)≥\(\frac{a+b+c}{3}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)