Lời giải:
Áp dụng BĐT AM-GM:
$(a^2+b^2)^2=(a+b)^2\leq 2(a^2+b^2)\Rightarrow a^2+b^2\leq 2$
Tiếp tục áp dụng BĐT AM-GM:
\(P=a^4+b^4+\frac{2020}{(a^2+b^2)^2}\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\). Ta có:
\(\frac{(a^2+b^2)^2}{2}+\frac{8}{(a^2+b^2)^2}\geq 2\sqrt{\frac{(a^2+b^2)^2}{2}.\frac{8}{(a^2+b^2)^2}}=4\)
\(\frac{2012}{(a^2+b^2)^2}\geq \frac{2012}{2^2}=503\) do $a^2+b^2\leq 2$
Do đó: $P\geq \frac{(a^2+b^2)^2}{2}+\frac{2020}{(a^2+b^2)^2}\geq 4+503=507$
Vậy $P_{\min}=507$. Giá trị này đạt tại $a=b=1$