Vì nó đã là định lí nên miến phải chứng minh
Vì nó đã là định lí nên miến phải chứng minh
Cho \(a\), \(b\), \(c\) là 3 số thực không âm thỏa mãn: \(a+b+c=3\)
Tìm GTNN của biểu thức: \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
(mong mọi người giúp em bằng cách chứng minh dễ nhất với các bđt quen thuộc vd côsi, bunhia...., trừ khi nếu không thể ạ) Em cảm ơn ạ!
chứng minh với a b không âm ta luôn có \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Cho hai số dương a, b. Chứng minh rằng:
a) Nếu a > b thì \(\sqrt{a}>\sqrt{b}\)
b) Nếu \(\sqrt{a}>\sqrt{b}\) thì a >b
Cho biểu thức:
R=\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a)Rút gọn R
b)Chứng minh rằng nếu R=b+81/b-81 thì khi đó b/a là 1 số nguyên chia hết cho 3
Cho a, b, c là các số dương thoả mãn: a+b+c=1. Chứng minh bất đẳng thức: \(\sqrt{ab+c}\) + \(\sqrt{bc+a}\) + \(\sqrt{ca+b}\) ≤ 2
Chứng minh rằng nếu \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\) thì \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\) với n là số nguyên dương lẻ.
cho a,b,c là các số dương thỏa mãn: a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
chứng minh rằng: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c là các số thực dương thỏa mã : a,b,c > 0. Chứng minh \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
Bài 1: Cho a,b là hai số dương, chứng minh rằng:
\(\sqrt{\left(\sqrt{a^2+b^2}-a\right)\left(\sqrt{a^2+b^2}-b\right)}=\dfrac{a+b-\sqrt{a^2+b^2}}{\sqrt{2}}\)
CÁC BẠN ƠI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!