Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khắc Tùng Lâm

Cho a,b > 0, c ≠ 0. CMR:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

Akai Haruma
19 tháng 7 2019 lúc 11:19

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ac=0(*)\).

Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$

\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$

\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$

Do đó:

\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)

\(\Leftrightarrow (c+a)(c+b)=c^2\)

\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)

\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)

\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)

\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)

\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)


Các câu hỏi tương tự
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Hrgwggwuch sv5
Xem chi tiết
Nguyễn Thúy linh
Xem chi tiết
Trân Nari
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Anna Trần
Xem chi tiết