Bài 1: CMR:
a, (4+sqrt{3}). (4-sqrt{3})13
b, sqrt{8+2sqrt{7}}-sqrt{8-2sqrt{7}}2
c, frac{sqrt{1}}{2+sqrt{3}}+frac{sqrt{1}}{2-sqrt{3}}4
d, frac{asqrt{b}+bsqrt{a}}{sqrt{ab}}:frac{1}{sqrt{a}-sqrt{b}}a-b(a0, b0, a≠b)
Bài 2: CMR:
a, sqrt{a}+frac{sqrt{1}}{sqrt{a}}ge2left(a0right)
b, a+b+frac{1}{2}gesqrt{a}+sqrt{b}left(a,b0right)
c, frac{1}{x}+frac{1}{y}+frac{1}{z}gefrac{1}{sqrt{xyz}}+frac{1}{sqrt{yz}}+frac{1}{sqrt{zx}}left(x,y,z0right)
d, frac{sqrt{3}+2}{sqrt{3}-2}-frac{sqrt{3}-2}{sqrt{3}+2}-8...
Đọc tiếp
Bài 1: CMR:
a, (4+\(\sqrt{3}\)). (4-\(\sqrt{3}\))=13
b, \(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=2\)
c, \(\frac{\sqrt{1}}{2+\sqrt{3}}+\frac{\sqrt{1}}{2-\sqrt{3}}=4\)
d, \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b\)(a>0, b>0, a≠b)
Bài 2: CMR:
a, \(\sqrt{a}+\frac{\sqrt{1}}{\sqrt{a}}\ge2\left(a>0\right)\)
b, a+b+\(\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\left(a,b>0\right)\)
c, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xyz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\left(x,y,z>0\right)\)
d, \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=-8\sqrt{3}\)
e, \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)=a-b(a>0, b>0, a≠b)
Bài 3: Tìm Min hoặc Max(nếu có):
a, \(\sqrt{x^2+9}\)
b, \(\frac{2}{\sqrt{x^2+1}}\)
c, 1-\(\sqrt{5+2x-x^2}\)