a) \(A=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow A=\frac{3^{2017}-3}{2}\)
b) \(2A+3=3^n\)
\(\Rightarrow2.\frac{3^{2017}-3}{2}+3=3^n\)
\(\Rightarrow3^{2017}-3+3=3^n\)
\(\Rightarrow3^{2017}=3^n\)
\(\Rightarrow n=2017\)
=3^1+3^2+3^3+....+3^2016
=[2016-1]:1+1.[2016+1]:2
=1008.2017=2033136
=3^2033136