Đề bài sai, dãy tăng và không hề bị chặn trên nên không tồn tại giới hạn
Đề bài sai, dãy tăng và không hề bị chặn trên nên không tồn tại giới hạn
Cho dãy un xác định bởi
\(\left\{{}\begin{matrix}x_1=3\\x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\end{matrix}\right.\) với n= 1,2,3,...
a) Tìm tất cả các số hạng là số nguyên dương trong dãy trên
b) Tìm số hạng tổng quát
Cho dãy \(\left(x_k\right)\) được xác định như sau: \(x_k=\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{k}{\left(k+1\right)!}\)
Tìm \(limu_n\) với \(u_n=\sqrt[n]{x_1^n+x_2^n+...+x_{2011}^n}\).
Cho dãy số (Un) được xác định như sau: \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\). Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\) . Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số Un xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{4}\\u_{n+1}=u_n^2+\dfrac{u_n}{2}\end{matrix}\right.\) với mọi \(n\ge1\). Tìm lim Un
Cho dãy (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1>0\\u_{n+1}=\dfrac{1}{3}.\left(2u_n+\dfrac{a}{u_n^2}\right),\forall n\ge1\end{matrix}\right.\)(Với a>0). Tính limUn
Cho dãy số \(\left(U_n\right)\) được xác định bởi: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{1}{2}.\left(u_n+\dfrac{2}{u_n}\right)\end{matrix}\right.\), \(\forall n\ge1\). Tìm lim Un
Tìm a,b để:
1, Lim(\(\sqrt{4n^2+2n+1}\)-an+b)=1
2, Lim( \(\sqrt{n^2+6n-1}-\sqrt{an^2+bn+2}\))=4
Tìm giới hạn lim un
a. \(u_n=\left(2-3n\right)^4\left(n+1\right)^3\)
b.\(u_n=\sqrt[3]{n+4}-\sqrt[3]{n+1}\)
c.\(u_n=\sqrt[3]{8n^3+3n^2+4}-2n+6\)
d. \(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\)
Help me ! Gợi ý cho mik cx đc ạ . Tks mng