Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Mai Sơn Trà

cho A= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

chứng minh rằng \(\dfrac{7}{12}< A< \dfrac{5}{6}\)

bạn nào làm xong trước mik tik

Mặc Chinh Vũ
5 tháng 7 2018 lúc 20:49

Ta có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A>\dfrac{1}{1.2}+\dfrac{1}{3.4}=\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{14}{24}=\dfrac{7}{12}\)\(\left(1\right)\)

Lại có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-\left(\dfrac{1}{6}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)\(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

Vậy \(\dfrac{7}{12}< A< \dfrac{5}{6}\) ( Điều phải chứng minh ).

Trần Trọng Quân
5 tháng 7 2018 lúc 21:21

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}\right)+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=\dfrac{7}{12}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}>\dfrac{7}{12}\left(1\right)\\ \Rightarrow A>\dfrac{7}{12}\left(1\right)\)

Ta lại có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\\ A=\dfrac{5}{6}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-...\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}< \dfrac{5}{6}\\ \Rightarrow A=< \dfrac{5}{6}\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{7}{12}< A< \dfrac{5}{6}\left(dpcm\right)\)


Các câu hỏi tương tự
Trần Bảo Hân
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Hoàng Giang
Xem chi tiết
NT Dũng
Xem chi tiết
Trịnh Đức Thịnh
Xem chi tiết
Thu Trang Đinh Thị
Xem chi tiết
Trịnh Thị Thảo Nhi
Xem chi tiết
Ngọc Sunny
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết