ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)
=> 10A<10B =>A<B
vậy A bé hơn B
ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)
=> 10A<10B =>A<B
vậy A bé hơn B
So sánh A và B : \(A=\dfrac{20^{10}+1}{20^{10}-1}\) và \(B=\dfrac{20^{10}-1}{20^{10}-3}\)
1.Tính nhanh:
A= \(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
2. Cho: B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\) .Hãy chứng tỏ rằng B > 1.
3. Rút gọn:
a) C= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{20}\right)\)
b) D= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
4. So sánh: E=\(\dfrac{20^{10}+1}{20^{10}-1}\) và F =\(\dfrac{20^{10}-1}{20^{10}-3}\)
5. Tính giá trị của biểu thức:
M= \(\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\)
So sánh :
\(A=\dfrac{10^8+2}{10^8-1};B=\dfrac{10^8}{10^8-3}\)
Bai 5. Tinh nhanh
a, \(\dfrac{1}{5.8}+\dfrac{1}{8.7}+\dfrac{1}{11.14}+.......+\dfrac{1}{605.606}\)
b,\(\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{11}-1\right)\left(\dfrac{1}{12}-1\right)....\left(\dfrac{1}{2012}-1\right)\)
Chứng minh rằng: \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)
A=10^2019-1/10^2020+1 và B=10^2020-1/10^2021+1
So sánh A và B.
Tính nhanh
E = \(\dfrac{-9}{10}.\dfrac{5}{14}+\dfrac{1}{10}.\dfrac{-9}{2}+\dfrac{1}{7}.\dfrac{-9}{10}\)
Chứng tỏ rằng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}\text{+}\dfrac{1}{3.4}\text{+}.........\text{+}\dfrac{1}{99.100}\)< 1
Mau nha
Bài 1 : Tính nhanh
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
Bài 2:Tìm x biết
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
tính H = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)