CÂU 1: giải phương trình sau:
\(x^2=-\sqrt{x+2019}+2019\)
CÂU 2: chứng minh: \(C_E\left(A\cup B\right)=\left(C_EA\right)\cap\left(C_EB\right)\) . trong đó A, B là con của E
đặc biệt viết lại là: \(E\backslash\left(A\cup B\right)=\left(E\backslash A\right)\cap\left(E\B\right)\)
* chú ý: \(E\in\left(A\cap B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
\(x\in\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\in A\\x\in B\end{matrix}\right.\)
\(x\notin\left(A\cup B\right)\Leftrightarrow\left\{{}\begin{matrix}x\notin A\\x\notin B\end{matrix}\right.\)
m.n giúp mk bài này ạ. thank m.n
Cho \(A\subset B\) và \(B\subset C\). Mệnh đề nào dưới đây sai?
A.\(\left(A\cap B\right)\cup\left(B\cap C\right)=B\)
B. \(A\cup\left(B\C\right)=A\)
C. \(A\backslash\left(B\cap C\right)=\phi\)
D. \(\left(A\cap C\right)\cup B=C\)
Những quan hệ nào trong các quan hệ sau là đúng ?
a. \(A\subset A\cup B\)
b. \(A\subset A\cap B\)
c. \(A\cap B\subset A\cup B\)
d. \(A\cup B\subset B\)
e. \(A\cap B\subset A\)
Cho M = (-∞; 5], N = [-2; 6). Chọn khẳng định đúng
A. \(\left(A\B\right)\cap\left(B\cup C\right)\)= {8}
B. \(\left(A\B\right)\cap\left(B\cup C\right)\)= ∅
C. \(\left(A\B\right)\cap\left(B\cup C\right)\)= (-6;8]
D. \(\left(A\B\right)\cap\left(B\cup C\right)\)= (-6;-3)
Cho A, B là hai tập hợp khác rỗng phân biệt. Xem xét trong các mệnh đề sau, mệnh đề nào đúng ?
a) \(A\subset B\)\ A
b) \(A\subset A\cup B\)
c) \(A\cap B\subset A\cup B\)
d) A\ \(B\subset A\)
Cho A=(m-1;4] và B=(-2;2m+2) với m∈R. Tìm m để:
a) \(A\cap B\ne\varnothing\)
b) \(A\subset B\)
c)\(B\subset A\)
d) \(A\cap B\subset\left(-1;3\right)\)
Cho A, B là hai tập hợp. Hãy xác định các tập hợp sau :
a) \(\left(A\cap B\right)\cup A\)
b) \(\left(A\cup B\right)\cap B\)
c) (\(A\)\ \(B\)) \(\cup B\)
d) (A \ B) \(\cap\) (B\A)
câu 1: cho \(A=\left\{x\in R:x+2\ge0\right\},B=\left\{x\in R:5-x\ge0\right\}.tìmA\cap B\)
câu 2: A=\(\left[-4;7\right]\) và B=\(\left(-\infty;-2\right)\cup\left(3;-\infty\right)\) tìm A\(\cap\)B
Cho a, b, c, d là những số thực. Hãy so sánh a, b, c, d trong các trường hợp sau :
a) \(\left(a;b\right)\subset\left(c;d\right)\)
b) \(\left[a;b\right]\subset\left(c;d\right)\)