Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)
\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)
\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)
Từ (1) và (2) và (3)
\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )