Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quốc Bảo

Cho a , b , c dương

CMR \(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)

Kuro Kazuya
13 tháng 5 2017 lúc 2:49

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)

\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)

\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)

\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)

\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)

\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)

\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)

Từ (1) và (2) và (3)

\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )


Các câu hỏi tương tự
lê thị tiều thư
Xem chi tiết
Quynh Existn
Xem chi tiết
Lâm Tinh Thần
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hồng Anh
Xem chi tiết
Đinh Thuận
Xem chi tiết
Sai Lầm Moon
Xem chi tiết
Đặng Hà Minh Huyền
Xem chi tiết
Quynh Existn
Xem chi tiết