Cho \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (Với a, b,c,d khác 0 và b khác d ,-d)
CMR \(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\dfrac{a}{b}\right)^{2009}\)
Cho hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) thỏa mãn b, d > 0 và \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho \(b^2=ac\) và \(c^2=bd\) ( với b,c,d ≠ 0 ; b+c ≠ d ; \(b^{2017}+c^{2017}\text{ ≠}d^{2017}\) )
CMR :
\(\dfrac{a^{2017}+b^{2017}+c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\dfrac{\left(a+b+c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{b}{a}\)
và a+b+c+d=0. Tính giá trị biểu thức sau :
\(\dfrac{2a-b}{c+d}+\dfrac{2b-c}{d+a}+\dfrac{2c-d}{a+b}+\dfrac{2d-a}{b+c}\)
Bài 1: Cho 4 số a,b,c,d thỏa mãn \(b^2=ac;c^2=bd\\ \) . Chứng minh \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Bài 2 : Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 3 : CMR : Nếu a(y+z)=b(z+x)=c(x+y) trong đó a,b,c là các số thực khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Bài 4 : Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Bài 5 : CMR : Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)
Giúp mk vs mai mk phải nộp rồi
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(a,b,c\ne0\right)\)
CMR: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
2) Cho a,b,c, d \(\in\) N*, b là trung bình cộng của a và c và \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\)
CMR: a,b,c,d lập nên 1 tỉ lệ thức
Bài 2 : Cho \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\left(a,b,c,d>0\right)\)
Tính
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
cho a;b;c;d là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c+d}{b}=\dfrac{a+b-c+d}{c}=\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}\)
tính giá trị của biểu thức
\(M=\dfrac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)