Ta thấy:
\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Áp dụng BĐT AM-GM ta có:
\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)
Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)
Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)