Đề \(A=2017+\sqrt{2016-x}\)
Giải
a) A có nghĩa khi \(\sqrt{2016-x}\ge0\Leftrightarrow2016-x\ge0\Leftrightarrow x\le2016\)
b)Ta thấy: \(\sqrt{2016-x}\ge0\forall x\)
\(\Rightarrow2017+\sqrt{2016-x}\ge2017\forall x\)
\(\Rightarrow A\ge2017\forall x\)
Đẳng thức xảy ra khi \(\sqrt{2016-x}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)
Vậy với \(x=2016\) thì \(A_{Min}=2017\)