Bài 7: Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thị Hạnh Trần

Cho A =2+2^2+2^3+...+2^60 chứng tỏ rằng A chia hết cho 3,5

Rin Huỳnh
26 tháng 1 2023 lúc 14:42

\(2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\\ =2.15+2^5.15+...+2^{57}.15=15\left(2+2^5+...+2^{57}\right)\)

Mà \(15\left(2+2^5+...+2^{57}\right)⋮3\) và \(15\left(2+2^5+...+2^{57}\right)⋮5\) nên A chia hết cho 3 và 5