chứng minh rằng
1+1/3+1/5+1/7+...+1/99-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Tính giá trị biểu thức :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\left(\dfrac{1}{6}+\dfrac{2}{6}+\dfrac{3}{6}+\dfrac{4}{6}+\dfrac{5}{6}\right)-\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\right)+...+\left(100+...+\dfrac{99}{100}\right)\)
Thuc hien phep tinh
A, 3/7 + 1/2 - (-3)/70
B, 3/5 + -1/25 - 35/100
C, 5/12 - 3/-16 + 3/4
D, 5/15 + 4/-12 + 1/7 - 1/-6
a.1+(-3)+5+(-7)+....+17+(-19)
b.1-4+7-10+....-100+103
c.1+2-3-4+5+6-7-8+...-99-100+101+102
a.1+(-3)+5+(-7)+....+17+(-19)
b.1-4+7-10+....-100+103
c.1+2-3-4+5+6-7-8+...-99-100+101+102
a.1+(-3)+5+(-7)+....+17+(-19)
b.1-4+7-10+....-100+103
c.1+2-3-4+5+6-7-8+...-99-100+101+102
a.1+(-3)+5+(-7)+....+17+(-19)
b.1-4+7-10+....-100+103
c.1+2-3-4+5+6-7-8+...-99-100+101+102
1.
(n+5) chia hết cho (n-2)
(2n+1)chia hết cho(n-5)
2.
S=1+2-3-4+5+6-7-8+.....-99-100
tính giá trị biểu thức sau
A= -1 -2 +3 +4 -5 -6 +7 +8-9-10+11+12 -...........-2013-2014+2015+2016
B= [\(\dfrac{1}{2}\) -1 ] : [\(\dfrac{1}{3}\) -1] : ...................: [\(\dfrac{1}{99}\) -1} : [\(\dfrac{1}{100}\) -1]