Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Cho a là số nguyên tố lớn hơn 3. CMR: \(a^2-1\) chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\) chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\) chia hết cho 240
Cho a, b, c, d là các số nguyên dương đôi một khác nhau thỏa mãn: \(\dfrac{a}{a+b}\) + \(\dfrac{b}{b+c}\) + \(\dfrac{c}{c+d}\) + \(\dfrac{d}{d+a}\)= 2
CMR: a, b, c, d đều là 1 số chính phương
Cho các số dương a, b, c, d có tích bằng 1
CMR: \(a^2+b^2+c^2+d^2+ab+cd\ge6\)
cho a,b,c,d là các số thực dương.Chứng minh rằng \(\frac{a+c}{b+a}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{d+b}{d+a}\ge4\)
cho tứ giác ABCD có AB=a; BC=b; CD=c; DA=d (a,b,c,d > 0 thỏa \(a^2+b^2+c^2+d^2=\left(a+c\right)\left(b+d\right)\)
a) tứ giác ABCD có gì đặc biệt?
b) nếu cho thêm giả thiết AC*BD=ab+cd khi đó tính các góc của ABCD
cho 4 số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1 =cd cm c=d
1. Cho a,b,c là độ dài 3 cạnh của tam giác. Cmr:
A= a / b+c-a + b /a+c-b + c/a+b-c >_ 3
Cho các số dương a , b , c , d thỏa mãn a + b + c + d = 8
Tìm GTNN của biểu thức : S = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\)
Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR: