a)\(\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{ac}{bc}+\dfrac{ab}{bc}=\dfrac{ac+ab}{bc}=\dfrac{a\left(b+c\right)}{bc}=\dfrac{a^2}{bc}\) \(\dfrac{a}{b}.\dfrac{a}{c}=\dfrac{a^2}{bc}\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{a}{b}.\dfrac{a}{c}=\dfrac{a^2}{bc}\)
b)\(\dfrac{a}{b}-\dfrac{a}{c}=\dfrac{ac}{bc}-\dfrac{ab}{bc}=\dfrac{ac-ab}{bc}=\dfrac{a\left(c-b\right)}{bc}=\dfrac{a^2}{bc}\)\(\dfrac{a}{b}.\dfrac{a}{c}=\dfrac{a^2}{bc}\)
\(\Rightarrow\dfrac{a}{b}-\dfrac{a}{c}=\dfrac{a}{b}.\dfrac{a}{c}=\dfrac{a^2}{bc}\)