Đặt \(\dfrac{a^3}{c}=x;\dfrac{b^3}{a}=y;\dfrac{c^3}{b}=z\)
Suy ra \(\dfrac{a^3}{c}.\dfrac{b^3}{a}.\dfrac{c^3}{b}=xyz\Leftrightarrow xyz=\left(abc\right)^2=1\)
Vậy ta có \(\dfrac{c}{a^3}=\dfrac{1}{x};\dfrac{a}{b^3}=\dfrac{1}{y};\dfrac{b}{c^3}=\dfrac{1}{z}\)
Theo đề bài ta có \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{xy+xz+yz}{xyz}=xy+xz+yz\)
Ta lại có \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xz-yz-xy+x+y+z-1=1-\left(xz+yz+xy\right)+x+y+z-1=-\left(x+y+z\right)+\left(x+y+z\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)
_ x=1\(\Leftrightarrow\dfrac{a^3}{c}=1\Leftrightarrow a^3=c\left(1\right)\)
Tương tự:
y=1\(\Leftrightarrow\)\(b^3=a\)(2)
z=1\(\Leftrightarrow c^3=b\)(3)
Từ (1),(2),(3)
Vậy trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong 2 số còn lại