Bài 1: trên mặt phẳng tọa độ \(O_{xy}\), cho 2 đường thẳng \(\left(d_1\right)y=x-3;\left(d_2\right)y=-3x+1\)
a, Vẽ \(\left(d_1\right);\left(d_2\right)\) trên cùng 1 mặt phẳng tọa độ
b, Viết phương trình đường thẳng\(\left(d\right)y=ax+b\) biết \(\left(d\right)//\left(d_1\right)\) và cắt trục tung tại điểm có hoành độ bằng 7
Bài 2: Cho hàm số bậc nhất \(y=\left(m-1\right)x+m-3\) \(\left(m\ne1\right)\)\(\left(d\right)\)
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 1
b,Gọi A, B lần lượt là giao của (d) với 2 trục tọa độ. Tìm m để △OAB cân
Mọi người giúp mình hai bài này với, mình cần gấp
a) Viết phương trình đường thẳng đi qua 2 điểm \(A\left(\frac{2}{\sqrt{3}};2\right)\) và \(B\left(\sqrt{3};1\right)\)
b) Viết phương trình đường trung trực của đoạn AB
Bai 1
Cho 3 điểm A(0;1) B(6;5) C(12;-1)
a) tìm tọa độ trực tâm tam giác
b) tìm toạ độ trọng tâm G
Bài 2
Tam giác ABC có phương trình 2 đường cao là x+y=2 và 9x+3y=4 , đỉnh A toạ độ(2;2). Viết phương trình các cạnh tam giác ABC
Bài 3
Cho điểm A(1;4) B(3;5) C(6;4) D(2;2) . ABCD là hình gì
Bài 1: Cho 2 đường thẳng \(\left(d_1\right)y=2x-1\); \(\left(d_2\right)y=x+2\)
a, Vẽ 2 đường thẳng \(\left(d_1\right)\)và \(\left(d_2\right)\) trên cùng 1 mặt phẳng tọa độ
b, Xác định tọa độ giao điểm của \(\left(d_1\right)\) và \(\left(d_2\right)\) bằng phép toán
c, Viết phương trình đường thẳng \(\left(d\right)y=ax+b\). Biết \(\left(d\right)//\left(d_1\right)\) và cắt trục hoành tại điểm có hoành độ bằng 1
Cho hai đường thẳng \(y=-4x+m-1\left(d_1\right)\) và \(y=\dfrac{4}{3}x+15-3x\left(d_2\right)\)
a, Tìm m để đường thẳng \(\left(d_1\right)\) và (\(\left(d_2\right)\) cắt nhau tại một điểm C trên trục tung.
b, Với m ở trên hãy tìm tọa độ giao điểm A,B của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) với trục hoành.
cho hàm số y = 3x + 2 có đồ thị là đường thẳng (d1)
a, điểm A \(\left(\dfrac{1}{3};3\right)\) có thuộc đường thẳng (d1) hay không ? tại sao ?
b, tìm giá trị của m để đường thẳng (d1) và đường thẳng (d2) có phương trình là y = -2x - m cắt nhau tại điểm có hoành độ bằng 1
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)
2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.
a) Tính AB, AC ?
b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.
c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.
3. Vẽ đồ thị hàm số:
a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).
b) Xác định tọa độ giao điểm I của (d1) & (d2).
4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.
a) Chứng minh: BECD là hình thoi.
b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.
c) Chứng minh: MF là tiếp tuyến của đường tròn.
5. Rút gọn:
a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)
b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)
d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)
6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).
a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.
b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.
7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).
a) Chứng minh: OA là đường trung trực của BC.
b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .
c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.
8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)
a) Viết phương trình đường thẳng AB.
b) Chứng minh: ba điểm A, B, C thẳng hàng.
9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.
a) Chứng minh: OCBD là hình thoi.
b) Tính CD theo R.
c) Chứng minh: ΔACD đều.
d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).
10. Tìm ĐKXĐ và rút gọn biểu thức:
\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)
11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)
a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)
b) Viết phương trình đường thẳng d2 đi qua C và D.
c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.
12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.
a) MEHF là hình gì?
b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.
c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .
a)Viết phương trình đường thẳng \(\left(\Delta\right)\)biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng -3
b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là -2 và đi qua (-1;5)
Giúp tớ với :<< Mai tớ phải nộp rồi