a, cho A = \(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\). tìm x để A có giá trị nguyên ( x ϵ Z)
b, Thực hiện phép tính: {[(2\(\sqrt{2}\))\(^2\) : 2,4] x [5,25 : (\(\sqrt{7}\))\(^2\)]} : {[2\(\dfrac{1}{7}\) : \(\dfrac{\left(\sqrt{5}\right)^2}{7}\)] : [2\(^2\) : \(\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\)]}
Cho a,b là các số thực sao cho với mọi c > 0 ta có a < b+c
Chứng minh : \(a\le b\)
giúp mik vs ạ
bài 1
a tìm số thực x biết: |x - 25/3| -2=7/3
b cho hàm số y=ʃ(x)= 3-\(^{2x^2}\) . tính ʃ(1/2)
Bài 1:a) Tìm x,y thuộc N biết : 36-y^2 = 8.(x-2020)^2
b) Tính : 3/7-3/13+3/17 / 5/7-5/13+5/17
c) Tính : 5^4.4^4.5^4/5^10.4^5
d) Tìm giá trị của x,y thỏa mãn: Ix-2007I+I2y-2020I^2021=0
e) So sánh 2 số : 2^2210 . 5^12 và 2^5558 : 2^3
Bài 2:a) Cho a/b+c=b/c+a=c/a+b với a,b,c > 0 Tính giá trị của biểu thức A = 2020- b+c/a + c+a/b - a+b/c
b) Cho A=1/2^2 + 1/2^4 + 1/2^6 +...+ 1/2^100. Chứng minh rằng A<1/3
c) Tìm giá trị nhỏ nhất của biểu thức sau : H=I x-3 I + I 4+x I
Giải giùm mình ik, mình cho 5* câu nào trước cũng được nha
cho các số a,b,c thỏa mãn : 3/a+b=2/b+c=1/c+a(gt các tỉ số đều có nghĩa)
Tính giá trị biểu thức : M=2a+3b+2020c/3a+2b-2021c
Cho 2 số hữu tỉ a và b thỏa a+b=ab=a/b :
1. Chứng minh a/b =a-1
2. Chứng minh b=-1
3. Tìm a
thực hiện phép tính
a. 2 phần 3 -4(1 phần 2 + 3 phần 4)
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Bài 1: Cho 4 số a,b,c,d thỏa mãn \(b^2=ac;c^2=bd\\ \) . Chứng minh \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Bài 2 : Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 3 : CMR : Nếu a(y+z)=b(z+x)=c(x+y) trong đó a,b,c là các số thực khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Bài 4 : Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Bài 5 : CMR : Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)