Lời giải:
Đầu tiên ta sẽ chứng minh $(a^3+b^3)(a^5+b^5)\leq 2(a^8+b^8)(*)$
Thật vậy, $(*)\Leftrightarrow a^3b^5+a^5b^3\leq a^8+b^8$
$\Leftrightarrow a^5(a^3-b^3)-b^5(a^3-b^3)\geq 0$
$\Leftrightarrow (a^5-b^5)(a^3-b^3)\geq 0$
$\Leftrightarrow (a-b)^2(a^4+...+b^4)(a^2+ab+b^2)\geq 0$ (luôn đúng với mọi $a,b$
Do đó $(*)$ đúng
Nhân cả 2 vế của $(*)$ với $a+b\geq 0$ suy ra:
$(a+b)(a^3+b^3)(a^5+b^5)\leq 2(a+b)(a^8+b^8)$
Ta cần chứng minh $2(a+b)(a^8+b^8)\leq 4(a^9+b^9)$
$\Leftrightarrow (a+b)(a^8+b^8)\leq 2(a^9+b^9)$
$\Leftrightarrow a^9+b^9-a^8b-ab^8\geq 0$
$\Leftrightarrow a^8(a-b)-b^8(a-b)\geq 0$
$\Leftrightarrow (a^8-b^8)(a-b)\geq 0$
$\Leftrightarrow (a^4-b^4)(a^4+b^4)(a-b)\geq 0$
$\Leftrightarrow (a^4+b^4)(a-b)^2(a+b)(a^2+b^2)\geq 0$ (luôn đúng với mọi $a+b\geq 0$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a+b=0$ hoặc $a=b$