Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-3;-1) , B(-1;-3) , C(3,1).
a) Chứng tỏ tam giác ABC vuông, tính diện tích tam giác ABC.
b) Tính tọa độ điểm M, biết MA+3MB=2MC=0.
c) Tìm tọa độ điểm N thuộc trục OX sao cho |NC+2NB| đạt giá trị nhỏ nhất ?
BÀI 1: Cho tứ giác ABCD . M,N lần lượt là trung điểm AD,BC.
a) chứng minh \(\overrightarrow{MN}\) = \(\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)\)
b) Gọi I nằm trên đoạn MN sao cho IM = 2IN. Chứng minh rằng \(\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}+\overrightarrow{ID}=O\)
BÀI 2 : Cho hình bình hành ABCD.Gọi O là điểm bất kì trên cạnh AC.Từ O kẻ các đường thẳng // với các cạnh.Các đường này lần lượt cắt AB,BC,CD,DA tại M,F,N,E.Chứng minh : \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
*Bài1: Cho ΔABC, B' là điểm đối xứng của B qua C. E,F là 2 điểm sao cho 2.vectơAE = vectơAC, 3.vectơAF = vectơAB
a) Tính vectơAB' theo vectơAB và vectơAC b) C/minh: B', E, F thẳng hàng
*Bài2: Cho ΔABC và 2 điểm M,N thỏa vectơNC = 2.vectơAN, vectơAM = 1/2 vectơBC
C/minh: B,M,N thẳng hàng
*Bài 3: Cho ΔABC. I,J là 2 điểm thỏa vectơIA = 2.vectơIB, 3.vectơJA + 2.vectơJC = vectơ0 ( bằng 0 )
a) tính vectơIJ theo vectơAB, vectơAC b) C/minh: đường thẳng IJ đi qua trọng tâm G của tam giác ABC
*Bài 4: Cho ΔABC nội tiếp trong đường tròn tâm O. G,H lần lượt là trọng tâm và trực tâm của ΔABC, M là trung điểm của BC
a) So sánh vectơHA và vectoMO
b)C/minh: vectơHA + vectơHB + vectơHC = 2.vectơHO và vectơOA + vectơOB + vectơOC = vectơOH
c)C/minh: vectơOA + vectơOB + vectơOC = 3.vectơOG và O,G,H thẳng hàng
*Bài 5: Cho ΔABC. M, N, P thỏa vectơMB = 2.vectơMC, vectơNA = -2.vectơNC, vectơPA +vectơPB = vectơ0
a) tính vectơPM, vectơPN theo vectơAB, vectơAC b)C/m: M,N,P thẳng hàng
*Bài 6: Cho ΔABC. I,J,K thỏa 2.vectơIB + 3.vectơIC = vectơ0
2vectơJC + 3.vectơJA = vectơ0
2.vectơKA + 3.vectơKB = vectơ0
C/minh: ΔABC và ΔIJK có cùng trọng tâm
*Bài 7: Cho ΔABC, A' là điểm đối xứng của B qua A. B' là điểm đối xứng của C qua B, C' là điểm đối xứng của A qua C
C/minh: ΔABC và ΔA'B'C' có cùng trọng tâm
*Bài 8: Cho ΔABC. N,M,L thỏa vectơAN = 2.vectơNC, 2.vectơBM = vectơMC, vectơAL = x.vectơAB
Tìm x để M,N,L thẳng hàng
Cho tam giác ABC nội tiếp đường tròn (O). Các đường thẳng đi qua các đỉnh A,B,C song song với nhau lần lượt cắt đường tròn (O) tại các điểm \(A_1,B_1,C_1\), Chứng minh rằng : Trực tâm các tam giác \(BCA_1,CAB_1,ABC_1\) thẳng hàng
Trong mp Oxy cho tam giác ABC có A(1;2), B(-2;-3), C(4;-1).
a. Tính độ dài đường cao AH của . Từ đó suy ra diện tích .
b. Tìm tọa độ tâm đường tròn ngoại tiếp
giúp mik đi
cho tam giác ABC, các đường cao AD, BE, CF, trực tâm H. DK là đường cao của tam giác DEF, và M,N,P lần lượt là trung điểm của DK, EF, BC. đường thẳng MN cắt BC tại R. CMR AP, EF, RH đồng quy