a, M(x)= 3x^4-2x^3+x^2+4x-5
+ N(x)= 2x^3+x^2 -4x-5
M(x)+N(x)= 3x^4 +2x^2 -10
b, P(x)+N(x)=M(x) => Px=M(x)-N(x)
=> P(x)= 3x^4-2x^3+x^2+4x-5-(2x^3+x^2 -4x-5)
=> P(x)= 3x^4- (2x^3+2x^3)+(x^2-x^2)+(4x+4x)-(5-5)
=> P(x)= 3x^4- 4x^3 + 8x
Vậy P(x)= 3x^4- 4x^3 + 8x
a: M(x) +N(x) = 3x4-2x3+x2+4x-5+2x3+x2-4x-5=3x4+2x2-10
b: Gợi ý là :P(x) =M(x) -N(x)
a) M(x) + N(x) = ( 3x^4 - 2x^3 + x^2 + 4x - 5 ) + ( 2x^3 + x^2 - 4x - 5)
=> M(x) + N(x) = 3x^4 - 2x^3 + x^2 + 4x - 5 + 2x^3 + x^2 - 4x - 5
=> M(x) + N(x) = 3x^4 + ( -2x^3 + 2x^3 ) + (x^2 + x^2 ) + ( 4x - 4x ) + ( -5 - 5 )
=> M(x) + N(x) = 3x^4 + 2x^2 - 10
b) Ta có: P(x) + N(x) = M(x)
=> P(x) = M(x) - N(x)
=> P(x) = ( 3x^4 - 2x^3 + x^2 + 4x - 5 ) - ( 2x^3 + x^2 - 4x - 5)
=> P(x) = 3x^4 - 2x^3 + x^2 + 4x - 5 - 2x^3 - x^2 + 4x + 5
=> P(x) = 3x^4 + ( - 2x^3 - 2x^3 ) + ( x^2 - x^2 ) + ( 4x + 4x ) + ( -5 + 5 )
=> P(x) = 3x^4 - 4x^3 + 8x