Cho một hình vuông và 9 đường thẳng trong đó cứ mỗi đường thẳng đều chia hình vuông thành hai tứ giác có tỉ số diện tích là \(\dfrac{2}{3}\). Chứng minh rằng trong số 9 đường thẳng đó có ít nhất 3 đường thẳng đồng quy tại 1 điểm.
Cho hình vuông ABCD, kẻ 9 đường thẳng trong đó mỗi đường chia hình vuông thành hai tứ giác có tỉ số diện tích là \(\dfrac{2}{3}\). Chứng minh rằng trong 9 đường thẳng đó có ít nhất 3 đường thẳng đồng quy
Cho tam giác ABC có diện tích 81 cm2. Qua điểm M nằm trong tam giác, vẽ các đường thẳng song song với các cạnh của tam giác, tạo thành 3 hình bình hành và ba tam giác nhỏ. Biết diện tích 2 trong 3 tam giác nhỏ bằng 4 và 16 cm2. Tính diện tích tam giác thứ 3.
Cho 2018 đường thẳng, trong đó không có 2 đường thẳng nào song song. Biết rằng qua giao điểm của 2 đường thẳng bất kì trong 2018 đường thẳng ấy còn có ít nhất một trong các đường thẳng còn lại đi qua.Chứng minh tất cả 2018 đường thẳng ấy đều đồng quy
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
a.tìm m để đồ thị hàm số y=(2m-1)x-m+2 vuông góc với đường thẳng y=-x
b.cho đường thẳng d có pt:ax+(2a-1)y+3=0
tìm a để đường thẳng d đi qua điểm M(1;-1). khi đó hãy tìm hệ số góc của đường thẳng d
c.cho đường thẳng d có pt:y=mx+2m-4.tìm m để đồ thị hàm số đi qua gốc tọa độ
Cho hàm số: \(y=\left(m+3\right)x+n-2\) (d). Tìm m, n trong mỗi trường hợp sau: Đường thẳng (d) song song với đường thẳng y=-x+3 và cắt đường thẳng y=3x+4 tại điểm có tung độ -2
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy