Ta có:
\(\left(1-\dfrac{1}{21}\right)\left(1-\dfrac{1}{28}\right)\left(1-\dfrac{1}{36}\right)...\left(1-\dfrac{1}{1326}\right)\)
\(=\dfrac{20}{21}.\dfrac{27}{28}.\dfrac{35}{36}...\dfrac{1325}{1326}\)
\(=\dfrac{5.8:2}{6.7:2}.\dfrac{6.9:2}{7.8:2}.\dfrac{7.10:2}{8.9:2}...\dfrac{50.53:2}{51.52:2}\)
\(=\dfrac{5.8}{6.7}.\dfrac{6.9}{7.8}.\dfrac{7.10}{8.9}...\dfrac{50.53}{51.52}\)
\(=\dfrac{\left(5.6.7...50\right).\left(8.9.10...53\right)}{\left(6.7.8..51\right).\left(7.8.9...52\right)}\)
\(=\dfrac{5.53}{51.7}\)
\(=\dfrac{265}{357}\)