Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Yến

Câu 1: Tìm phần thực phần ảo của Z thỏa mãn 1+(1+i)+(1+i^2)+...+(1+i)^20

Câu 2: Tìm 1/Z sao cho Z=(3+căn3 i)^3

Câu 3: Tìm Z thỏa mãn môđun (Z-1)/(Z+1)=1 hoặc môđun (Z-3i)/(Z+1)=1

Nguyễn Việt Lâm
17 tháng 3 2019 lúc 6:44

1/Áp dụng công thức tổng cấp số nhân:

\(z=1+\left(1+i\right)+\left(1+i\right)^2+...+\left(1+i\right)^{20}=1+\frac{\left(1+i\right)^{21}-1}{i+1-1}=1+\frac{\left(1+i\right)^{21}-1}{i}\)

Ta có:

\(\left(1+i\right)^{21}=\left(1+i\right)\left[\left(1+i\right)^2\right]^{10}=\left(1+i\right)\left(1+2i+i^2\right)^{10}\)

\(=\left(1+i\right)\left(2i\right)^{10}=\left(1+i\right).2^{10}.i^{10}=\left(1+i\right)2^{10}\left(i^2\right)^5=-\left(1+i\right).2^{10}\)

\(\Rightarrow z=1+\frac{-\left(1+i\right)2^{10}-1}{i}=1+\frac{-i\left(1+i\right)2^{10}-i}{i^2}=1+\left(i+i^2\right)2^{10}+i=1+i+\left(i-1\right).2^{10}\)

\(\Rightarrow z=\left(1-2^{10}\right)+\left(1+2^{10}\right)i\)

2/

\(z=\left(3+i\sqrt{3}\right)^3\Rightarrow\frac{1}{z}=\frac{1}{\left(3+i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(3+i\sqrt{3}\right)^3\left(3-i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(9-3i^2\right)^3}\)

\(\Rightarrow\frac{1}{z}=\frac{\left(3-i\sqrt{3}\right)^3}{12^3}=\left(\frac{1}{4}-\frac{\sqrt{3}}{12}i\right)^3\)

3/ Bạn viết lại đề được không?


Các câu hỏi tương tự
AllesKlar
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Nguyễn Văn Toán
Xem chi tiết
Nguyễn Văn Toán
Xem chi tiết
Nguyễn Thành Trung
Xem chi tiết
Minh Đức
Xem chi tiết
AllesKlar
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
Lê Thị Kim Chi
Xem chi tiết