Câu 1: Phân số \(\dfrac{a}{b}\) sau khi rút gọn được phân số \(\dfrac{-8}{11}\) . Biết b-a = 190, tìm phân số \(\dfrac{a}{b}\) .
Câu 2: Tính giá trị biểu thức:
P = \(\dfrac{2.3.4-2.3.4.9+2.3.4.11-2.3.4.13}{5.6.7-5.6.7.9+5.6.7.11-5.6.7.13}\)
Câu 3: Chứng minh rằng S =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
1,
Vì \(\dfrac{a}{b}=\dfrac{-8}{11}\)
=>a.11=b.(-8) (1)
Mà b-a=190
=>b=a+190 (2)
Từ (1), (2)
=>a.11=(a+190).(-8)
=>11a=(-8).a+190.(-8)
=>11a=-8.a+(-1520)
=>11a+8a=-1520
=>a.(11+8)=-1520
=>a.19=-1520
=>a=(-1520):19
=>a=-80
=>b=-80+190=110
Vậy a=-80;b=110
Câu 1:
Ta có:
\(\dfrac{a}{b}=\dfrac{-8}{11}\Leftrightarrow1-\dfrac{a}{b}=1-\dfrac{-8}{11}\)
Hay \(\dfrac{b-a}{b}=\dfrac{11+8}{11}\left(1\right)\)
Thay \(b-a=190\) vào \(\left(1\right)\) ta được:
\(\dfrac{190}{b}=\dfrac{19}{11}\Leftrightarrow b=110\Leftrightarrow a=-80\)
Vậy phân số \(\dfrac{a}{b}=\dfrac{-80}{110}\)
Câu 2: Ta có:
\(P=\dfrac{2.3.4-2.3.4.9+2.3.4.11-2.3.4.13}{5.6.7-5.6.7.9+5.6.7.11-5.6.7.13}\)
\(=\dfrac{2.3.4.\left(1-9+11-13\right)}{5.6.7.\left(1-9+11-13\right)}\)
\(=\dfrac{2.3.4}{5.6.7}=\dfrac{4}{35}\)
Vậy \(P=\dfrac{4}{35}\)
Câu 3:
\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\)
\(\Rightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\)
Do đó \(2S-S=1-\dfrac{1}{2^{20}}\) Hay:
\(S=1-\dfrac{1}{2^{20}}< 1\) (Đpcm)
\(P=\dfrac{2.3.4-2.3.4.9+2.3.4.11-2.3.4.13}{5.6.7-5.6.7.9+5.6.7.11-5.6.7.13}\)
=>\(P=\dfrac{2.3.4.\left(1-9+11-13\right)}{5.6.7.\left(1-9+11-13\right)}\)
=>\(P=\dfrac{2.3.4}{5.6.7}\)
=>\(P=\dfrac{2.3.4}{2.3.5.7}\)
=>\(P=\dfrac{4}{5.7}\)
=>\(P=\dfrac{4}{35}\)
Ta có \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{20}}\)
=>\(2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{20}}\right)\)
=>\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{2^{19}}\)
=>\(2S-S=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{19}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{20}}\right)\)
=>S=1\(-\dfrac{1}{2^{20}}\)
Mà \(1-\dfrac{1}{2^{20}}\)<1
=>S<1
Vậy S<1