Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Bích Trâm

Câu 1: a) Cho biết a=2+\(\sqrt{3}\) và b=2-\(\sqrt{3}\) .Tính giá trị biểu thức :P=a+b-ab

b) Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)

Câu 2: Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\) (với x>o,x\(\ne\)

a) Rút gọn biểu thức P

b) Tìm các giá trị của x để P>\(\dfrac{1}{2}\)

Câu 3: Cho phương trình: x2-5x+m=0 (m là tham số)

a) Giải phương trình khi m=6

b) Tìm m để phương trình trên có nghiệm x1,x2 thỏa mãn:|x1-x2|=3

Câu 4: Cho đường tròn tâm O đường kính AB.Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O) .Lấy điểm E trên cung nhỏ BC (E khác B và C) ,AE cắt CD tại F .Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn

b) AE.AF=AC2

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp \(\Delta\)CEF luôn thuộc một đường thẳng cố định

Câu 5: Cho hai số dương a,b thỏa mãn : a+b\(\le\) \(2\sqrt{2}\). .Tìm giá trị nhỏ nhất của biểu thức : P=\(\dfrac{1}{a}+\dfrac{1}{b}\)

Ngọc Lan
20 tháng 5 2017 lúc 11:42

Câu 1:

a, \(P=a+b-a.b\\ < =>P=2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right).\left(2-\sqrt{3}\right)\\ < =>P=4-\left(4-2\sqrt{3}+2\sqrt{3}-3\right)\\ < =>P=4-4+2\sqrt{3}-2\sqrt{3}+3\\ P=3\)

b, Gỉai hptrình:

\(\left\{{}\begin{matrix}3x+5=5\\x-2y=-3\end{matrix}\right.\)

Giaỉ hpt là tìm: x= 1; y=2

Phan Thế Nghĩa
20 tháng 5 2017 lúc 15:07

Câu 1b/ ta có: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(-3+2y\right)+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-9=5\\x-2y=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

câu 2:

ta có:

\(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\dfrac{x-1}{x}\)

câu 5; ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)

Nguyễn Tấn Dũng
20 tháng 5 2017 lúc 16:19

5) Áp dụng BĐT Cô-si,ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\) \(\geq\) \(\dfrac{4}{a+b}\) \(\geq\) \(\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\) MinP=\(\sqrt{2}\) khi a=b=\(\sqrt{2}\)


Các câu hỏi tương tự
Học24
Xem chi tiết
ha thi thuy
Xem chi tiết
Nguyễn Thị Thùy Dung
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Trang
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
anh phuong
Xem chi tiết
Minecraftboy01
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết