chứng minh tam giác ABC đều
a) sin2A+sin2B+sin2C=sinA+sinB+sinC
b) sin6A + sin6B + sin 6C = 0
c) sin A + sinB + sinC = \(cos\frac{A}{2}+cos\frac{B}{2}+cos\frac{C}{2}\)
d) \(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}=\frac{1}{8}\)
\(sinA=\frac{sinB+sinC}{cosB+cosC}\)Chứng minh tam giác ABC vuông
Nhận dạng tam giác ABC biết:
\(\left\{{}\begin{matrix}sinA=\frac{cosA+cosB}{sinB+sinC}\\2sinBsinC=1+cosA\end{matrix}\right.\)
Chứng minh rằng trong một tam giác ABC ta có :
a) \(\tan A+\tan B+\tan C=\tan A\tan B\tan C\) (\(\widehat{A},\widehat{B},\widehat{C}\) cùng khác \(\dfrac{\pi}{2}\))
b) \(\sin2A+\sin2B+\sin2C=4\sin A.\sin B.\sin C\)
Cho tam giác ABC, x, y, z ∈ R. Chứng minh:
\(\frac{cosA}{x}+\frac{cosB}{y}+\frac{cosC}{z}\) ≤ \(\frac{x^2+y^2+z^2}{2xyz}\)
Cho \(m\sin\left(a+b\right)=\cos\left(a-b\right),\left|m\right|\ne1,\sin\left(a-b\right)\ne0.\)Chứng minh rằng: \(\frac{1}{1-m\sin2a}+\frac{1}{1-m\sin2b}=\frac{2}{1-m}\)
Câu 1 : chứng minh rằng : \(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}=tan2a\)
Câu 2 : chứng minh : \(cos^2\left(\alpha-\frac{\pi}{4}\right)-sin^2\left(\alpha-\frac{\pi}{4}\right)=sin2\alpha\)
Giá trị biểu thức P= \(\left(sin2a+sin2b\right)^2+\left(cos2a+cos2b\right)^2\) BIẾT a-b=\(\frac{\pi}{6}\) là
Hãy phát biểu các khẳng định sau đây dưới dạng điều kiện cần và đủ
Tam giác ABC vuông tại A thì \(BC^2=AB^2+AC^2\)
Tam giác ABC có các cạnh thỏa mãn hệ thức \(BC^2=AB^2+AC^2\) thì vuông tại A