Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai trần

Các Bạn không cần làm mà chỉ mình chỗ này mình chưa hiểu : Phần B Khi mà giải ra B = 4/( 3 - căn x) thì làm sao để biết được (3 - căn x) này là âm ạ. Hay cả trên tử cũng vậy (1+căn x) ( liên quan tới hình ảnh bên dưới)

trương khoa
20 tháng 7 2021 lúc 10:06

cái này thì ko nhất thiết phải Cm nha bạn

Câu b kêu tìm x để B ko nhỏ hơn hoặc bằng A

Nghĩa là

\(\dfrac{4}{3-\sqrt{x}}>1\)

\(\Leftrightarrow\dfrac{4}{3-\sqrt{x}}-1>0\)

\(\Leftrightarrow\dfrac{4-\left(3-\sqrt{x}\right)}{3-\sqrt{x}}>0\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{3-\sqrt{x}}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1>0\\3-\sqrt{x}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1< 0\left(VL\right)\\3-\sqrt{x}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Theo Đk ta có x≥0

Vậy 0≤x<9 thì B ko nhỏ hơn hoặc bằng A

Akai Haruma
21 tháng 7 2021 lúc 18:11

Lời giải giống như bạn dưới đã viết.

Để $B$ không nhỏ hơn hoặc bằng $A$

Tức là $B>A$

$\Leftrightarrow \frac{4}{3-\sqrt{x}}>1$

$\Leftrightarrow \frac{4}{3-\sqrt{x}}-1>0\Leftrightarrow \frac{\sqrt{x}+1}{3-\sqrt{x}}>0$

Để phân thức này dương thì tử và mẫu phải cùng dấu.

Mà $\sqrt{x}+1\geq 0+1>0$ (dương rồi) nên $\sqrt{3}-x$ cũng dương.

------------------------

Đây là cách dễ làm nhất đối với bài này.

------------------------

Về phần lời giải của cô em, chị nghĩ trong lúc giảng em bị miss mất 1 số ý chứ ý cô không phải khẳng định mẫu âm đâu. Có lẽ ý của cô em thế này:

Khi em có: $\frac{4}{3-\sqrt{x}}>1$ thì em không nên nhân chéo mà nên trừ để đưa về hiệu >0 (như bạn Khoa đã giải). Nếu nhân chéo, em sẽ mắc phải 2 TH mẫu âm, mẫu dương như sau:

TH1: $3-\sqrt{x}>0$ thì $\frac{4}{3-\sqrt{x}}>1$ tương đương với $4> 3-\sqrt{x}$

TH2: $3-\sqrt{x}< 0$ thì tương đương $4< 3-\sqrt{x}$ (khi nhân 2 vế với số âm thì phải đổi dấu)

Như vậy thì rất là phức tạp. Nên để tránh TH mẫu âm mà hs giữ nguyên dấu khi nhân chéo thì cô em khuyên như vậy.

Akai Haruma
21 tháng 7 2021 lúc 18:12

Em còn chỗ nào chưa hiểu thì cứ hỏi thoải mái.


Các câu hỏi tương tự
Mai trần
Xem chi tiết
Mai trần
Xem chi tiết
camcon
Xem chi tiết
Mai trần
Xem chi tiết
Mai trần
Xem chi tiết
camcon
Xem chi tiết
Mai trần
Xem chi tiết
Mai trần
Xem chi tiết
Mai trần
Xem chi tiết